20" International Symposium on ElectroMagnetic Compatibility (CEM2020)

EM Injection Vs. Modern CPU
Fault Characterization And AES Differential Fault Analysis

T. Trouchkine!, G. Bouffard'?, J. Clédiére?
1Agence Nationale de la Sécurité des Systémes d’Information, Paris, France, thomas.trouchkine @ssi.gouv.fr
2DIENS, Ecole Normale Supérieure, CNRS, PSL University, Paris, France, guillaume.bouffard@ens.fr
3CEA, LETI, Grenoble, France, jessy.clediere @cea.fr

Abstract. Recently, several Fault Attacks (FAs) targeting
modern Central Processing Units (CPUs) have emerged.
These attacks are studied from a practical point of view
and, due to the modern CPUs complexity, the underlying
fault effect is usually unknown.

In this article, we focus on the characterization of a
perturbation (the fault model) on a modern CPU. For
that, we explain an approach to characterize the fault
model on modern CPU from the assembly instruction
level to the micro-architectural level. This fault model
helps at determining which micro-architecture elements
are disrupted and how. The fault model determination
aims at finding original attack paths and design efficient
countermeasures. To confront our approach to real mod-
ern CPUs, we apply our approach on a Raspberry Pi 3
CPU on which the determined fault model is reused to
corrupt an AES implementation.

I. Introduction

Nowadays, mobile devices are widely used. They are
based on high performance System on Chips (SoCs)
which embed performance oriented Central Processing
Units (CPUs). With all their optimizations, these modern
CPUs have shown flaws in their security [3].

Since 2015, several Fault Attacks (FAs) on modern
CPUs [10], [11], have been presented, some are new and
some others already applied on Micro-Controller Units
(MCUs) CPUs [5]. These attacks are very practical and,
due to the complexity of modern CPUs, the underlying
fault effect is usually unknown. The fault effect knowl-
edge is mandatory for building efficient countermeasures
and evaluating the impact of an attack. Therefore, we
think that fault characterization on modern CPUs is an
important work for the future.

Many fault model characterizations have been done
on MCUs [I], [6] but only few on modern CPUs [8].
For determining the fault model on such targets and
for making it reproducible, we introduce in [I2] a
characterization method. In this article, we describe how
our method can be used to break an AES implementation
with an ElectroMagnetic Fault Injection (EMFI).

This article is organized as follows. Section II introduces
how a CPU works and the section III describes our

approach to characterize fault from instruction assembly
to Micro-Architectural Blocks (MABs). In the section IV,
we applied the introduced approach on the Raspberry Pi 3
CPU and exploit our results on an AES implementation.
Finally, section V concludes and opens on future works.

II. A quick overview of modern CPU modeling

Any CPU can be modeled with three functional elements:

— A pipeline which fetches, decodes and executes
instructions.

— Registers where the manipulated data are stored.

— A memory storing the instructions and some data.
On modern devices, the memory is usually external to the
CPU. However, there is always an internal one, called
cache, where a part of the external memory is copied.
The three functional elements are based on MABs as
introduced in Figure 1.

Registers
--
:Pipeline 1 VE !
i 1
! Fetch Decode Execute 1
i 1
i)
N R A :
: :

1

Data Cache

!

Instruction Cache

4—»‘ MMU ‘4—»

Mixed Cache

!

External Memory

Micro-architectural blocks manipulating:

D Data D Instructions

Fig. 1: CPU model

Communication buses: <—

The pipeline fetches and decodes the instructions then the
execute stage realizes the operation. In modern CPUs,
these blocks have several optimizations that we do not
consider in our model. The memory relies on several
cache levels and a Memory Management Unit (MMU).
Usually, CPUs have a mixed architecture where the data
and the instruction paths are separated only at the lowest

Faulted program

Faulted data

’ Registers ‘ ’ Memory ‘

Pipeline

’ Faulted instruction ‘

[MMU | ’B‘us‘ | Cache |

’ Decode ‘ ’ Execute ‘

’ Bus ‘ ’ Cache ‘

Fig. 2: Fault effect characterization overview [12].

cache level. The instructions and the data are not differ-
entiated in the high cache level (L2/L3) and the external
memory, this is a Von Neumann architecture. But, in the
lowest level of cache (L1) the instructions and data are
separated, this is an Harvard architecture. As modern
CPUs have both organizations, they are said to have a
mixed architecture.

Physically, a core corresponds to the registers, the
pipeline, the MMU and the cache. The CPU is composed
of one or more cores, but in the end, its behavior
corresponds to this model.

This model is usually used for fault characterization
on MCUs as all fault models can be explained by the
perturbation of MABs presented in Figure 1. As most of
the MCUs have only one core in their CPU, this model fits
them well. The question is to know whether this model
is still relevant for a multi-core optimized CPU. We will
show that, on average, it is enough for determining more
than 80% of the fault effects.

III. Fault effect analysis on CPU

During a Fault Injection (FI), one or several CPU MABs
are disturbed. As they can all be perturbed during a fault
injection, the full fault effect characterization can be a
complicated process. However, according to the previous
works, in most cases, the fault affects only a single
MAB [4], [°]. We actually verified this assumption on
modern CPUs. Under this simplified paradigm, the fault
characterization problem aims at determining which MAB
is faulted and how.

To reach our objective, the proposed method consists in
realizing a fault during the test program execution and in
determining the micro-architectural fault that can explain
the observed misbehavior.

Introduced in [12] and summarized in figure 2, the method
general idea is to apply a top-down approach. We start
by determining whether the fault affects the data or the
instructions. Once we know which element is affected, we
determine which of its MABs is faulted. To discriminate

which element is faulted, we repeatedly execute the same
instruction on a known state CPU.

The executed instructions must have two properties, they
should not modify the state of the processor. This is
helpful as, in this case, if we observe a modification
in the processor state, it comes from the fault. Also the
instructions should not fetch data from memory, reducing
the analysis frame.

Disturbing the program execution will give a distribution
of faulted values. The next step consists in determining
whether these faulted values come from a fault on the
manipulated data or on the instructions.

Once we know if the data or the instructions are faulted
and based on the figure 1, it is possible, from the fault
model on these elements to determine which MABs have
been faulted. In the case of a register corruption, it is
straightforward that the registers are faulted. In the case
the wrong instruction is fetched from the memory, either
the cache has loaded the wrong data or the MMU has
failed the address translation. If an instruction corruption
is observed, the fault affects either one of the pipeline
MABS or the cache or the instruction bus.

IV. Experimental analysis
IV.1. Fault model determination on BCM2837

Using the method presented in section III, we determine
the fault model on a BCM2837 SoC from a Raspberry Pi
3 model B board. The chosen injection medium is Elec-
troMagnetic Pulse (EMP). Our bench is composed of an
high voltage (800V/16A) pulse generator, a home-made
probe (copper wire around a ferrite) and an Arduino based
defibrillator. The target runs a Raspbian Lite distribution.
The fault model determination process is split in two
steps. The first step is the hot-spots determination, i.e. the
parameters set (position over the target chip and power
voltage) for which we obtain the best faults/crashes ratio.
The second step consists in determining the fault effect
on the executed program for a fixed set of parameters.

During the characterization, we observed that the prob-

ability to achieve an interesting fault is around 10%.
Among these faults, the most probable effect (around 80%
among all interesting faults) is a corruption of the second
operand of the instructions.

This fault model was determined by realizing two ex-
periments. The first experiment aims at faulting a code
repeating the mov r3, r3 instruction. We observe that
in 80% of the cases, the value of r3 is modified and cor-
respond to the value of another register, r2 for instance.
This corresponds to fault the second operand of the
mov r3, r3 instruction into mov r3, r2. During
the second experiment, we fault a code repeating the orr
r3, r3 instruction. We observed that in 80% of the
cases, r3 is faulted and the faulty value is the logical
or between r3 and r2. Corresponding to the faulty
instruction orr r3, r2.

This experiments shown that our setup is perturbing the
second operand of the executed instructions. Knowing the
fault model we are achieving, we propose to use it on a
real attack case, the cryptanalysis of the AES algorithm.

IV.2. Exploitation: Differential Fault Analysis (DFA)
on OpenSSL AES

In this section, we aim at demonstrating that the realized
characterization is relevant by recovering an AES key
using a DFA [2], [7].

a - Background

DFA: The DFA is a cryptanalysis method which
relies on the appearance of errors during a cryptographic
calculus to extract information about the manipulated
secret. The method we propose to apply was introduced
in [7] and extended in [2].

The principle of the attack is to realize a fault on a byte
of the AES state before the last MixColumns operation,
in the 9" round as presented in figure 3.

ko k1o

' |
o] @ —f s -

fault A
Fig. 3: DFA Principle

Once the faulty ciphertext c’ is obtained, we compute
the value A such as presented in equation (1).

A =SB Y SR c® ko)) ® SBTH (SR (@ kyo))

ey
In this equation, as the possible values for A are known
(there are only 256 possible values for A), the only
unknown value is k19 and at this point A has only four
bytes (among sixteen) that are not zeros. The next step
consists in testing all the values for these bytes in kjq (232

values in total) such as the corresponding A is among the
possible values.

Given a faulty ciphertext ¢’ this computation will give
a set of possible values for the k1o bytes. The correct
k1o value is the one that verify the equation (1) for
every faulted ciphertexts. In [2], the authors demonstrate
that the probability to recover the correct key with two
faulty ciphertexts is around 98%, which match with our
observations.

Repeating these steps 4 times able to recover the 16 bytes
of the key with only 8 faulty ciphertexts.

b - The AES test program setup

For this experiment, the BCM2837 executes the AES
from the OpenSSL library as a test program. The inputs
of this program are the key and the message to cipher
and have the following values:

k = 0x000102030405060708090a0b0c0d0e0f
m = 0x00112233445566778899%aabbccddeeff
As the DFA we want to realize does not require to cipher
different plaintexts, these values are hardcoded in the test
program. QOur goal is to recover the value of k.

¢ - Specific to complex CPUs consideration

The DFA we propose to realize requires that we fault a
byte in the AES state before the last MixColumns oper-
ation, i.e. during the 9" round. This constraint implies the
need of a precise synchronization between the execution
of the AES and the injection of the fault.

To evaluate our timing spreading, we realized an experi-
ment that gave us the information that with our injection
setup we usually fault 1 or 2 instructions. On average,
we fault 1.012 instructions per perturbation. With this
information, we are confident that we are able to fault
only one byte of the AES state. Actually, the main
constraint is to not fault more than one byte per column
of the AES as the DFA aim at recovering the key column
by column. Fault one byte in each column is the most
efficient fault we can achieve because this will give us
information on the four columns of the key from only
one faulty ciphertext.

Another issue with our target is its multi-core and multi-
thread architecture. This implies that we do not know on
which core the AES is executing and that some operations
may be executed in parallel. From our point of view, the
best way to measure the impact of these features is to
observe the probability of obtaining the awaited fault.

d - Results of the experiment

The fault campaign consisted in 3000 injections and
around an hour was needed to achieve them. Among this
injections we obtained a fault percentage of 15.54% (466
faults). Among these 466 faults, only 16 have only one
diagonal faulted (4.348%) and considering these faulted
ciphers, only 8 (50%) correspond to a one byte fault

before the MixColumns operation. Also, faults appear
with the same probability on every diagonals.

In the end, the probability to obtain a suitable faulted
cipher for the DFA is 0.34% which corresponds to 1 ci-
pher every 294 injections. Considering an injection needs
2 seconds, we obtain a usable cipher every 10 minutes.
As 8 ciphers are needed for realizing the complete DFA
and because every diagonal has the same probability to
be faulted, 3 hours of injection are completely enough to
obtain the needed ciphers.

e - DFA implementation

We also implemented the DFA algorithm in C-language.
From 2 faulted ciphertexts with the same faulted diagonal,
our program is able to recover the 4 corresponding bytes
of the key in an hour on average. The computer used for
this computation is powered by an Intel(R) Core(TM) i7-
8550U CPU clocked at 1.80GHz with 16GiB of memory.
As our implementation works per diagonals, it is possible
to run four instances of the program and therefore realize
the cryptanalysis on the four diagonals in parallel.
Finally, once we obtained the faulted ciphers, only 1 hour
is needed to recover the key. Adding the time needed to
obtained these faulted ciphers, the complete cryptanalysis
can be achieved in less than 4 hours.

This timing considers that the hot spots determination
and the fault characterization are already done. These
steps require a week of work but the results are reusable
on every target powered by the characterized device.

V. Conclusion and future works

In this paper, we present our step by step analysis
about the perturbation of a modern SoC, the BCM2837,
powering a Raspberry Pi 3 board. As this SoC is complex,
our analysis focus on its CPU for which we propose a
model. This model is intended to be general and suitable
for any kind of CPU. By faulting our target with EMFI
and by applying the method introduced in [12] we are able
to determine the fault model we achieve on this CPU.
After having determined how we perturb the target, we
decide to use our fault injection setup to realize a DFA on
the OpenSSL AES running on the BCM2837. Despite the
number of cores of the target CPU, the Linux Operating
System (OS) and the parallel program execution, we are
able to obtain suitable faulted ciphertexts for realizing the
cryptanalysis within a couple of hours.

This works shows that even on considered complex CPUs,
it is possible to realize both a fault characterization from
assembly instructions to MAB and a cryptanalysis in a
reasonable amount of time. This questions the security
of more “in production” devices such as smartphones.
The final aim consisting in evaluating how resistant these
devices are against EMFI attacks.

REFERENCES

[1] Claudio Bozzato, Riccardo Focardi, and Francesco Pal-
marini. Shaping the Glitch: Optimizing Voltage Fault
Injection Attacks. IACR Transactions on Cryptographic
Hardware and Embedded Systems, 2019(2):199-224,
2019.

[2] Christophe Giraud and Adrian Thillard. Piret and
Quisquater’s DFA on AES Revisited. IACR Cryptology
ePrint Archive, 2010:440, 2010.

[3] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin,
Daniel Gruss, Werner Haas, Mike Hamburg, Moritz Lipp,
Stefan Mangard, Thomas Prescher, Michael Schwarz, and
Yuval Yarom. Spectre Attacks: Exploiting Speculative
Execution. pages 1-19, 2019.

[4] Thomas Korak and Michael Hoefler. On the Effects
of Clock and Power Supply Tampering on Two Micro-
controller Platforms. In Assia Tria and Dooho Choi,
editors, FDTC 2014, Busan, South Korea, pages 8-17.
IEEE Computer Society, 2014.

[5] Fabien Majéric, Eric Bourbao, and Lilian Bossuet. Elec-
tromagnetic security tests for SoC. In IEEE ICECS 2016,
Monte Carlo, Monaco, pages 265-268. IEEE, 2016.

[6] Nicolas Moro, Amine Dehbaoui, Karine Heydemann,
Bruno Robisson, and Emmanuelle Encrenaz. Electromag-
netic Fault Injection: Towards a Fault Model on a 32-
bit Microcontroller. In Wieland Fischer and J6rn-Marc
Schmidt, editors, FDTC 2013, Los Alamitos, CA, USA,
pages 77-88. IEEE Computer Society, 2013.

[7] Gilles Piret and Jean-Jacques Quisquater. A Differential
Fault Attack Technique against SPN Structures, with Ap-
plication to the AES and KHAZAD. In Colin D. Walter,
Cetin Kaya Kog, and Christof Paar, editors, CHES 2003,
Cologne, Germany, pages 77-88. Springer, 2003.

[8] Julien Proy, Karine Heydemann, Alexandre Berzati, Fabien
Majéric, and Albert Cohen. A First ISA-Level Character-
ization of EM Pulse Effects on Superscalar Microarchi-
tectures: A Secure Software perspective. In ARES 2019,
Canterbury, UK, pages 7:1-7:10. ACM, 2019.

[9] Lionel Riviere, Zakaria Najm, Pablo Rauzy, Jean-Luc Dan-
ger, Julien Bringer, and Laurent Sauvage. High precision
fault injections on the instruction cache of ARMv7-M
architectures. In HOST 2015, Washington, DC, USA, pages
62-67. IEEE Computer Society, 2015.

[10] Adrian Tang, Simha Sethumadhavan, and Salvatore J.
Stolfo. CLKSCREW: Exposing the Perils of Security-
Oblivious Energy Management. In Engin Kirda and
Thomas Ristenpart, editors, 26th USENIX Security Sym-
posium, USENIX Security 2017, Vancouver, BC, Canada,
August 16-18, 2017., pages 1057-1074. USENIX Associ-
ation, 2017.

[11] Niek Timmers, Albert Spruyt, and Marc Witteman. Con-
trolling PC on ARM Using Fault Injection. In FDTC 2016,
Santa Barbara, CA, USA, pages 25-35. IEEE Computer
Society, 2016.

[12] Thomas Trouchkine, Guillaume Bouffard, and Jessy
Clediere. Fault Injection Characterization on modern CPUs
— From the ISA to the Micro-Architecture. In WISTP 2019,
Paris, France, 2019.

	Introduction
	A quick overview of modern CPU modeling
	Fault effect analysis on CPU
	Experimental analysis
	Fault model determination on BCM2837
	Exploitation: DFA on OpenSSL AES
	Background
	The AES test program setup
	Specific to complex CPUs consideration
	Results of the experiment
	DFA implementation

	Conclusion and future works
	REFERENCES

