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Abstract. In smart card domain, attacks and countermeasures are ad-
vancing at a fast rate. In order to have a generic view of all the attacks,
we propose to use a Fault Tree Analysis. This method used in safety
analysis helps to understand and implement all the desirable and unde-
sirable events existing in this domain. We apply this method to Java Card
vulnerability analysis. We define the properties that must be ensured: in-
tegrity and confidentiality of smart card data and code. By modeling the
conditions, we discovered new attack paths to get access to the smart
card contents. Then we introduce a new security ApI which is proposed
to mitigate the undesirable events defined in the tree models.
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1 Introduction

A smart card is an intelligent and efficient device which stores data securely
and also ensures a secure data exchange. Security issues and risks of attacks
are ever increasing and continuous efforts to develop countermeasures against
these attacks are sought. This requires clear understanding and analysis of pos-
sible ways of attacks and methods to avoid or mitigate them through adequate
software and/or hardware countermeasures. To further understand the possible
attack paths, a common method is required and in this paper we try to define a
method which can help to sort these issues to an extent.

Often countermeasures are dedicated to an attack and do not take into ac-
count a global point of view. Usually designers use an inductive (bottom-up)
approach where, for each attack a mechanism is added to the system to mitigate
the attack. In such an approach, a probable event is assumed and the corre-
sponding effect on the overall system is tried to be ascertained. On one hand,
this allows to determine the possible system states from the knowledge of the at-
tacker model and on the other hand the feasible countermeasures for the attack.
Thus, it leads to several defenses where the final goal is not clearly defined nor
ensured. Moreover the overhead of the defenses is high both in terms of memory
footprint and CPU usage.



In this paper, we suggest to adopt a deductive approach (top-down) by rea-
soning from a more general case to a specific one. We start from an undesirable
event and an attempt is made to find out the event, and the sequence of events
which can lead to the particular system state. From the knowledge of the ef-
fect, we search a combination of the causes. We postulate a state, in our case a
security property, and we systematically build the chain of basic events.

This approach is based on a safety analysis, often used for safety critical sys-
tems. The safety analysis performed at each stage of the system development is
intended to identify all possible hazards with their relevant causes. Traditional
safety analysis methods include, e.g. Functional Hazard Analysis (FHA) [1],
Failure Mode and Effect Analysis (FMEA) [2] and Fault Tree Analysis (FTA).
FMEA is a bottom-up method since it starts with the failure of a component or
subsystem and then looks at its effect on the overall system. First, it lists all the
components comprising a system and their associated failure modes. Then, the
effects on other components or subsystems are evaluated and listed along with
the consequence on the system for each component’s failure modes. FTA, in par-
ticular, is a deductive method to analyze system design and robustness. Within
this approach we can determine how a system failure can occur. It also allows
us to propose countermeasures with a higher coverage or having wider dimension.

This paper is organized as follows, section 3 is about Java Card security. Sec-
tion 4 describes smart card vulnerability analysis using FTA. Section 5 presents
an API to mitigate undesirable events. Conclusions and future works are sum-
marized in section 6.

2 Using FTA for security analysis: Related Works

FTA is often used for reliability analysis but it can be also used for computer
security. In [3], the authors suggested to integrate FTA to describe intrusions in
an IT software and Colored Petri Net (CPN) to specify the design of the system.
The FTA diagrams are augmented with nodes that describe trust, temporal and
contextual relationships. They are also used to describe intrusions. The models
using CPNs for intrusion detection are built using CPN templates. The FTA
restricts drastically the possible combination of the events. In [4], FTA is used
to assess vulnerability considering the fact that the undesirable events of interest
should already be in a fault tree designed for the purpose of a risk assessment.
They showed how to build specific FTA diagrams for vulnerability assessments.
In [5], an attack tree is used to model potential attacks and threats concerning
the security of a given system. Attack trees are always having the same meaning
as FTA (same gate connectors). They generate attack scenario in a close way to
Unified Modeling Language (UML) scenario for evaluating, for example, a buffer
overflow in the system. Another work [6] described a methodology to analyze
both software and hardware failure in a system and also discussed the use of FTA
affordable for software systems by design, i.e. incorporating countermeasures so



that the fault can be considered and mitigated during analysis. Byres et al. [7]
used the BDMP! model to find vulnerabilities in SCADA system.

3 Security of Java based smart cards

Java Card is a kind of smart card that implements the standard Java Card
3.0 [8] specification. Such a smart card embeds a Virtual Machine (VM) which
interprets codes already romized with the operating system or downloaded after
issuance. Java Cards have shown an improved robustness compared to native
applications with respect to many attacks. Java Card is an open platform for
smart cards, i.e. able to load and execute new applications after issuance. For
security reasons, the ability to download code into the card is controlled by a
protocol defined by Global Platform [9]. This protocol ensures that the owner
of the code has the necessary credentials to perform the action. Thus different
applications from different providers can run on same smart card. Using type
verification, the byte codes delivered by the Java compiler and the converter (in
charge of delivering compact representation of CLASS files name CAP file) are
protected, i.e. and the application loaded is not hostile to other applications in
the Java Card. Furthermore, the Java Card firewall checks permissions between
applications on the card, enforcing isolation between them. Until now it was safe
to presume that the firewall was efficient enough to avoid malicious applications
(applet modified after off-card verification). Nevertheless some attacks have been
successful in retrieving secret data from the card.

Smart cards are designed to resist numerous attacks using both physical
and logical techniques. There are different ways to attack Java Card and many
of them are associated with countermeasures. An attacker can use physical or
logical attacks [10,11] or combined attacks [12,13] (combination of physical and
logical). Often ad-hoc countermeasures can only protect the card from a single
type of attacks. So if a manufacturer wants to protect his card against different
types of attacks he must embed several countermeasures. Here we are presenting
a model to avoid embedding unwanted countermeasures which in turn helps to
protect the embedded system against attacks.

4 Smart card vulnerability analysis using FTA

4.1 Introduction

FTA is an analytical technique (top-down) where an undesirable event is defined
and the system is then analyzed to find the combinations of basic events that
could lead to the undesirable event. A basic event represents an initial cause
which can be a hardware failure, a human error, an environmental condition or
any event. The representation of the causal relationship between the events is
given through a fault tree. A fault tree is not a model of all possible system
failures but a restricted set, related to the property evaluated.

! Boolean logic Driven Markov Process



FTA is a structured diagram constructed using events and logic symbols
mainly AND and OR gates (Fig. 1). Other logical connectors can be used like
the NOT, XOR, conditional etc. The AND gate describes the operation where all
inputs must be present to produce the output event. The OR gate triggers the
output if at least one of the input events exists. The INHIBIT gate describes the
possibility to forward a fault if a condition is satisfied. For readability of FTA
diagrams, a triangle on the side of an event denotes a label, while a triangle used
as an input of a gate denotes a sub tree defined somewhere else (Fig. 5).

In our work, we define four undesirable events that represent the failure
of the smart card system: code or data integrity, code or data confidentiality.
Code integrity is the most sensible property because it allows the attacker to
execute or modify the executable code which not only leads to the code and
data confidentiality but also the data integrity. The Java Virtual Machine (JVM)
prevents these events to occur under normal execution. Intermediate nodes in
the tree represent a step in an attack while leafs (basic events) represent either
the state of the system or a known attack. If this attack needs a given state of
the system to succeed then an AND gate must bind the attack to the state of
the system. Thus it becomes a condition on the system state. For example, the
EMAN 2 [13] attack shown in Fig. 2, modifies the return address. However, it is
necessary to get access to the content of the return address which is represented
by the intermediate node on the top. For modifying the return address, the
attacker must modify the CAP file and thereby the VM allows the execution
of ill typed applet. This latter condition is true if all the basic events are true:
absence of an embedded Byte Code Verifier (BCV), no run time check of the
index of the local variables and absence of integrity check of the system context
area in the frame. The BCV ensures that the applet to be installed is compliance
with the Java Card security rules. The presence of one of these countermeasures
is enough to mitigate the attack.

4.2 Code Integrity

The first property to be analyzed in a smart card for understanding or imple-
menting security features is the code integrity. If the attacker is able to modify
the method area or more generally to divert the control flow of the code to be
executed, then he will have the possibility to read or modify the data and code
stored inside the card. We consider two possibilities here, see Fig. 3, either the
processor executes a new code (execution of an arbitrary shell code) or it exe-
cutes the regular code in such a way that the initial semantics is not preserved.
In the left part of the tree (execution of a shell code), we can obtain it either by
changing the control flow by modifying of the branch condition [13] or the return
address as explained in the previous section. In the right branch of the fault tree
diagram, we modify the execution flow just like a program counter execute an
existing code. These attacks refer to code mutation were operands can be exe-
cuted instead of instructions as explained in [14]. In this class of attack, we can
find the attacks mentioned in [15] concerning the Java exception mechanism,
the attacks are not only related to the modification of the jump offset but also
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Fig. 3. Code integrity tree

At that step we need to find the most efficient countermeasure to protect the
code integrity. As described previously, each attack can be mitigated through a
dedicated countermeasures, e.g. for the EMAN 2 attack, it can be either through



the return address stored in a dedicated place (not accessible through a local
variable), a frame integrity mechanism, an embedded verifier, verification of the
indices of the locals during the load time or some run time checks. One can
remark that if the countermeasure is closed to the root of the tree its efficiency
in terms of coverage will be higher which doesn’t mean that the countermeasure
must be close to root. There are other parameters to be taken into account
like the run time cost, the latency, the memory footprint etc. For example the
Dynamic Syntax Interpretation (DSI) has a high coverage as shown in Fig. 4:
this countermeasure is at the top of the tree. A lot of other countermeasures can
also be applied here. This work has been extended to three other undesirable
events.

Code Integtity

Execution of new Existing code
athitrary code modification.

Fig. 4. An efficient countermeasure for code integrity

4.3 Basic Events: Possible Attacks

Known attacks are considered as basic events. Several authors proposed and
tested different types of attacks which are discussed here.

Abusing shareable interface is an interesting technique to trick the virtual
machine (VM). The principal mode of shareable interface attack [10] is to obtain
type confusion without modifying the CAP files. To accomplish such an attack,
the authors created two applets which are communicated using the shareable
interface mechanism. Each applet uses a different type of array to exchange
data in order to create the type confusion. In this case, the BCV cannot detect
any problem during compilation or while loading the files. In our experience,
most of the cards with an on-card BCV refused to allow applets using shareable
interface mechanism. Since it is impossible for an on-card BCV to detect this
kind of abnormality, Hubbers et al. [10] proposed the hypothesis of shareable
interface.

Another type of attack is the abort transaction, which is very difficult to
implement but it is a widely used concept in database system. The purpose of



this transaction is to make a group of atomic operations. By definition, the roll-
back mechanism should also deallocate any objects allocated during an aborted
transaction and reset the references of such objects to null. However, the authors
found that some cases where the card keeps the reference to objects allocated
during transaction, even after a rollback.

A fault model is explained in [16,17] to attack the smart card by physical
means. Nowadays, it is also possible to obtain precise byte errors using a laser
beam injection into the smart card memory or to perturb the runtime execution
(like a pipeline modification). Due to this physical fault, a logical attack can
occur which is called a combined attack. Barbu et al. proposed an attack based
on the checkcast instruction [15] which is used to modify the runtime type by
injecting a laser beam. Then this applet gets installed on the card after it has
been checked by an on card BCV and it is considered to be a valid applet. The
aim of this attack is to create a type confusion to forge a reference of an object
and its contents. The authors also explained the principle of instance confusion,
similar to the idea of type confusion where the objective is to confuse an instance
of object A to an object B by inducing a fault dynamically by using a laser beam.

Bouffard et al. described in [13], two methods to change the control flow
graph of a Java Card. The first one is EMAN 2, which provides a way to change
the return address of the current function. This information is stored in the
Java Card stack header. Once the malicious function exits during the correct
execution, the program counter returns to the instruction which addresses it.
The address of the JPC is also stored in the Java Card Stack header. An overflow
attack success to change the return address by the address of the malicious byte
code. Since there is no runtime check on the parameter, it allows a standard
buffer overflow attack to modify the frame header.

4.4 Basic Events: Possible Countermeasures

For stack area protection, Girard mentioned in [18], that the system area of
the frame is very sensible. So, he suggested to split the frame and manage the
stack context separately from the stack and the locals of the frame. In [15],
Barbu proposed a real approach by modifying the value of the security context
in case of an illegal modification delegating the control to the firewall. He also
suggested a stack invariant by XOR-ing the pushed and popped value. Dubreuil
et al. [14] proposed to use a typed stack without paying the cost of two stacks
manipulation. In the case of method area protection, it is possible to execute
data as program, considering the value to be XOR-ed should be dependent to the
type of the variables as suggested in [18]. Here, the data are protected within
the same bounds of possibility. Barbu [15] proposed exactly the same approach,
while Razafindralambo et al. [19] demonstrated that it is possible to recover the
XOR value by using a dynamic syntax adding randomization to the XOR function.
The implementation of all these countermeasures are during the linking step. In
order to avoid the exploitation of the linker, an algorithm has been proposed
in [14] to efficiently check the usage of the token to be linked by manipulating
the reference location component.



Séré proposed three countermeasures in [20]. The first one is the bit field
method based on the nature of the byte code that must remain non mutable
(i.e. an instruction cannot be replaced by an operand). The second one is the
basic block method, which is an extension of the work described in [4], where
a checksum is calculated during the execution of a linear code fragment and it
is checked during the exit. The last one is the path check method, a completely
different approach based on the difference between the expected execution paths
and the current one. Any divergence or code creation can be detected by coding
the path in an efficient way.

These countermeasures are of particular interest because they are addressing
the two events of the first level of code integrity. The patent [21] describes a
similar approach to the third countermeasure of Séré, but it is performed at the
applicative level. A similar approach, based on flags and preprocessing is there
to detect unauthorized modification in the control flow, as mentioned in [22]. To
avoid the exploitation of the checkcast attack, an efficient implementation of
this instruction was proposed in [15].

5 Definition of an API to Mitigate the Undesirable
Events

Countermeasures can be implemented at two levels: virtual machine (system)
or an applicative. The main advantage with system countermeasures is that the
protections are stored in the ROM memory, which is a less critical resource than
the EEPROM. So it is easier to deal with integration of the security data struc-
tures and code in the system. With applicative countermeasures, it is possible
to implement several checks inside the application code to ensure that the pro-
gram always executes a valid sequence of code on valid data. It includes double
condition checks, redundant execution, counter, etc. and are well known by the
developers. Unfortunately, this kind of countermeasures drastically increase the
program size because, besides the functional code, it needs security code and
the data structure for enforcing the security mechanism embedded in the appli-
cation. Furthermore, Java is an interpreted language therefore its execution is
slower than that with a native language. So, this category of countermeasures
experiences bad execution time and adds complexity for the developer. But the
main advantage here is that the developer has a precise knowledge of the sensi-
tive part of his code. A new approach exists, which is driven by an application
and it includes means in the system layer.

This solution presents a good balance between memory footprint and opti-
mization of the countermeasure. This also presents a possibility to offer security
interoperability between several manufacturers who implement this API.

5.1 Model of attacks

Using the FTA analysis, we defined attack paths that allows a simple laser based
fault injection. They correspond to the effect of a laser fault on the JVM. By
refining the analysis, we discover three new possibilities:



— If the effect of laser affects the value returned by a method it can execute a
code fragment without the adequate authorization or in a conditional evalu-
ation it can change the branch which is to be executed. This attack targets
the Java Card evaluation stack where the value returned by the function is
stored,

— The effect of fault can also bypass the execution of a given method. By
modifying the JPC one can jump over a method that performs a security
test letting on top of the stack the address of the called object. Of course,
the stack has a high probability to be ill typed (non compatible) at the end
of the current method. Nevertheless an attacker can still send high value
information before being detected,

— It can also modify the address of data to be copied in the 1/0 buffer or change
the number of byte to be copied. This attack allows to dump memory in an
arbitrary way.

They have been introduced as a new intermediate node: JpC CORRUPTION and
a new basic event: EVALUATION STACK CORRUPTION which can be obtained
either by a logical attack or a fault attack. They can be found not only on
different branches of the code integrity tree but also on the code confidentiality
tree like the leafs of the intermediate node CONDITIONAL BRANCH, they are
combined with an AND condition to generate the CODE DE-SYNCHRONIZATION
intermediate node.

Existing code
modification.
Code desynchro- Condition.
nization Branch
JPC Comuption

Eval Stack
Cormuption

Presence of JPC comuption

mutant

Frame
Comuption

Fig. 5. JpC corruption and its effects




With the FTA analysis we were able to determine new potential vulnera-
bilities. The next step is to design efficient countermeasures to ensure a high
coverage with a minimal memory footprint.

5.2 The INOSSEM API

Since several attacks can be performed against smart cards, an API has been
defined, so that a given application can request to increase security for a code
fragment. For example, to mitigate all the attacks against the stack, (i.e. the
parameters of a called method), it is possible to invoke a method with a signature
added as a parameter. Then, the application at the beginning of the execution
of the called method should verify that the parameters have not been modified
by a fault attack (listing 1.1).

// initialize the signature object with the first parameter
paramChkInstance. init (firstParam);
paramChkInstance . update (secondParam); //update signature buffer
short paramChk = paramChkInstance.doFinal (userPIN); // sign it
// invoke the sensitive method

sensitiveMeth (firstParam ,secondParam , userPIN , paramChk) ;

Listing 1.1. Use of the ParamCheck class to sign parameters

All sensitive methods of the Java Card applet must ensure that no attack
against the integrity of the frame occurred during the call. If the signature does
not match, the card must be blocked, as shown in the listing 1.2

void sensitiveMeth (byte pl,short p2,OwnerPIN p3,short chk) {
// initialize the signature object with the parameters
paramChkInstance. init (pl); paramChkInstance.update(p2);
//... check the integrity of the locals in the frame
if (paramChkInstance.doFinal(p3) != chk)

{// something bad occurred take some action }

Listing 1.2. Use of the ParamCheck class to verify parameters.

The second attack is related with JPC corruption. The control flow of the
program can be modified due to the attack. For mitigating it, we choose to
implement a security automaton into the API1. The security automaton represents
the security policy in terms of control flow checks. It is a partial representation
of the control flow of the program, thus providing a redundancy that can be
checked during the execution of the applet. For example, before decrementing
the value of a counter the authentication step must have occurred earlier. So
we included some states’ modification into the code with a call to setState()
method of the API. In the constructor of the applet, we have initialized a structure
representing the security automaton. Each time a call to setState () occurs, the
system checks if the current state allows the transition to the new state, if not
it throws a security exception (listing 1.3).



private void debit (APDU apdu) {

this.setState (CRITICAL SECTION); // transition to a new state

if (!pin.isValidated()) {//disallows if PIN is not verified
this.endStateMachine (PIN_VERIFICATION REQUIRED STATE) ;
ISOException. throwIt (SW_PIN VERIFICATION REQUIRED) ;}

Listing 1.3. The security automaton

There are also Java classes which are used to protect local variables against
integrity and confidentiality violation. These form a coherent means to protect
the application against the attack that the FTA analysis brought to the fore.

6 Conclusion and Future Works

A Fault Tree Analysis method was proposed and applied in the smart card do-
main which can be used for safety and vulnerability analysis. We have identified
four major undesirable events and refined the analysis to reach till the basic
events representing the effect of either laser attacks, logical attacks or their com-
bination. During the analysis we brought forth three new attacks considering
the effect of a single laser fault. And in the INOSSEM project the partners de-
fined an API that provides protections against these attacks. With this strategy,
a smart card developer can adapt the level of security of the JVM for a given
code fragment of its applet. We are currently considering quantification of the
probability for an attacker to reach his objective in a given time or the overall
mean time for the attack to overcome it. This on going work uses the BDMP
formalism [23] with the models designed in this paper.
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